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It is shown in the a r t i c le  that s imple analytical expressions can be used to determine the 
velocity of the front of a plane shock wave and the pa ramete r s  of the soil behind the front in 
the region f rom the boundary of the charge of explosive up to the moment of the emission 
of sound. The calculated data a re  compared with the results  of field tests .  The calculations 
a re  based on the use  of a d iagram of the compress ion  of the soil constructed taking account 
of the resul ts  of the experiment.  

1. A number of experimental  and theoret ical  publications [1-5], in which the soil is modeled as a 
"plastic gas ,"  an incompress ib le  liquid, and an elast icoplast icbody obeying the laws of the theory of plasticity,  
have been devoted to the problem under consideration. 

In the present  work a model of the soil proposed in [6] is adopted. It is assumed that the flow s tar t s  
immediately behind the front and that the density in a par t ic le  af ter  the passage  of the shock wave remains 
unchanged. 

F o r  descript ion of the medium we have two conditions: the condition of plastici ty and the law of volu- 
met r ic  compress ion  

�9 12 = ( k p  2.. 5 )2 /6  (1.1) 

p (0)= p~ (1.2) 

where J2 is the second invariant of the deviator of the s t r e ss  tensor;  p is the mean hydrostat ic  pressure ;  
k and b a re  coefficients character iz ing,  respectively,  the internal fr ict ion and the adhesion of the soil; 0 = 
1 - p o / p  is the volumetr ic  deformation; Po is the initial density; p is the density of the par t ic les  behind the 
front of the shock wave. 

F r o m  relat ionships (1.1) and (1.2) we can obtain the law of compress ion  for a monoaxial deformed 
s ta te  (Sy=e z = 0, ex = 0): 

~x = (1 + V'2k/3) p~ + V'2b/3 (1.3) 

The wave is propagated in the direction of the x axis and, in what follows, we shall a s sume that ax=a ,  

15X= E,. 

Let us determine the pa rame te r s  of a shock wave, propagating in a non-water - sa tura ted  sandy soil 
of f rac tured  s tructure,  having a mois tu re  content of w=15-17%. The compress ibi l i ty  of the soil varies;  the 
coefficients k=1.25,  b= 0. The compress ion  diagrams (1.2) used in the calculation a re  given on Fig.  1. 
Curve 1 i l lustrates  the compress ion  diagram of a soil with a volumetr ic  weight of its skeleton Tl = (1.225- 
1.295) �9 104 N /m 3, curve  2 a soil with a volumetr ic  weight of its skeleton T2 = (1.32-1.37)- 104 N /m 3. The 
par t s  of the curves corresponding to the experiment of [7] a re  shown by the solid line and a re  described by 
an exponential law (1.2). The power exponent of the compress ion  n and the pa rame te r  p0, respectively,  for  
curves  1 and 2, a re  equal to 2.5, 3.0, and 14.8.108, 3.64- 103 N/m 2. The measurements  of [7, 8] show that, 
with high p ressu res ,  the densification attains a limiting value and then remains  constant. Therefore,  the 
compress ion  diagram must  have an asymptote corresponding to the p ressure ,  and tending to infinity. We 
as sume  that the limiting values of the deformations for  curve  1 fluctuate within the limits ~. = 0.085-0.1; 
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for cur~;e 2 e, = 0.2. The lat ter  a re  taken f rom an analysis of 
the experimental  data of [5] fo r  non-wate r - sa tu ra ted  soils. 

In a homogeneous soil, occupying all the space  between 
the planes x0=• a, there  is located a charge  of explosive which, 
with an explosion, goes over  instantaneously into a h igh-pres -  
sure  gas without change of volume. The initial p r e s s u r e  in the 
products of an instantaneous detonation 

p, = pcDe/2 (1 + X) 

where D is the detonation rate;  Pc is the density of the cha rge  
of explosive; 2~ is the isentropic index for the detonation prod-  
ucts .  Taking D = 7 �9 103 m / s  ec, Pc = 1.6 k g / m  3, 2t = 3, we find Pi = 
10 l0 N /m 2. 

Using the relationship of the equality of the displacements 
at the boundary of the cavity at the moment  when the detonation 
products flow out into the medium [9] 

2D l ~  s [1 (P21(x-i)l=X]=l/P~8* 
~ . - - I V 2 ( s  L --\P'~/ .J t p0 

expression (1.3), and the condition of the equality of the s t r e s ses  
at the boundary between the limiting and var iable  densifications~ 
we find the initial p r e s s u r e  in the soil P2 ~ 2 �9 109 N /m 2. The ap- 
plication of a given dynamic load to the surface  x 0 = * a brings 
about the formation of a shock wave in the soil, which is then 
propagated over  the medium. 

By vir tue of symmetry ,  we consider the p rocess  f rom one 
side, f rom the middle of the charge. The origin of coordinates 
is at the point of symmet ry .  

The motion of the soil af ter  the passage  of the shock wave 
in Lagrange var iables  is descr ibed by the equations 

~u t o~ Ox ox 
at poaxo u ~ ,  ~ l - - s  (1.4) 

where x 0 and x a re  the coordinates  of a par t ic le  in accordance  
with Lagrange and Euler;  t is the time; u is the velocity. 

The boundary conditions for  (1.4) a re  the expressions of 
the laws of conservat ion at the front of the wave, the condition 
of the continuity of the instantaneous coordinate, and the equal- 
ity of the p r e s s u r e s  at the boundary of the expanding cavity, 

(~.f = p0~f  (dxJdt) 2, u / ~  8f (dxf/dt), x / ~  x0,  p• ~ P2 (a/x)  Y (1.5) 

The subscript  f means that the values re la te  to the front 
of the wave; pu is the p r e s s u r e  at the boundary of the cavity. 
As the polytropic index we take ~/= 1.25. 

We wri te  the solution of (1.4) taking account of (1.5). [2] 

X- = s ~- Ier [y (s)] ds, ~ = (Zf -- s) (p (V) (dy / dxf) -~ efy~ 
$ 

= ~ , = xo ~ l  = ~s  ; = ~ ~ = t ( p , l ' / . .  d x ,  ( 1 . 6 )  

@ (Y) = yd (sly) 
dy 

where y is the d imeasionless  velocity of the front of the wave; the c f  (ST) is known f rom the condition at the 
front of the wave and (1.3), and has the form 
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s] = ~ym, ~ : [(t + ]f2k/3) (pO/p~)]-m/~, m --- 2/(n --  i) (1.7) 

S u b s t i t u t i o n  of r e l a t i o n s h i p s  (1.6) i n to  t h e  l a s t  e x p r e s s i o n  of (1.5) fo l lowed  b y  d i f f e r e n t i a t i o n  g i v e s  a n  
e q u a t i o n  f o r  the  v e l o c i t y  of the  f r o n t  of t h e  wave :  

]-~/" (1.8) d [~ (y) ~l + e (y) y~ = ~ (~), y~ (0) ~ [y (0)1 = t, n = ~ --  t 
dn 

A f t e r  r e p l a c e m e n t  of the  v a r i a b l e s  

v --~ Ao-ty~I-~ dln~l/dv = l / ' f  (v) (1.9) 

( 1 . 8 )  a s s u m e s  the  f o r m  [2]  

d } F _ _ v m ~ - 2 o ) t t - l i v [ t t q _ ( m + l  ) ~]aV-ltr , m-l-2 v _}_ m i ~F m-~2  
d'~- W m + i  - [ - - -  --  t ~ ~  ( -~ ) - ~ - - } - ~ " ~ l ~ - ~ ( m + 2 )  ca=0 ' 

Aol / '~=--~-~  m+2(o~-1/~, : = 1 +  t ~ (1.10) 

p, = c0 (m-l- 1) + 1 

T h e  b o u n d a r y  c o n d i t i o n s  fo r  (1.10) a r e  

~f'= O, d ~ / d v = - - o )  (~'= 0), ~ =  0 ( v :  t) 

2. We s o l v e  Eq.  (1.8) f o r  t h e  r e g i o n  of c o n s t a n t  d e n s i f i c a t i o n  (m= 0, g .  =fl) [2]: 

{ t i 2 [t + ~n (2 - -  ~) (t + Sn) t-" - -  (t + ~n)2-+] ( 2 . 1 )  
Y=~-~ ~(i--~) (2--~) 

The dimensionless stresses, with constant and variable densification at the front are determined, 
respectively, by the expressions 

~ = ~u ~, ~i = ~y~+~ 

From the condition of the equality of the stresses at the moment of the transition from a constant den- 
sffication to a variable densffication, it follows that solution (2.1) is valid in the interval y(0) - y-> 1. 

To determine the motion of the front of the wave in the region of variable densffication, we integrate 
Eq. (1.10) numerically in a digital computer. The curve of the dependence @(v) is shown on Fig. 2. Curves 
1, 2, and 3 on Fig. 2 correspond to the values n=3, 2.5, and 1.8. Using the curves of ~(v) obtained, we ap- 
proximate the right-hand part of the second relationship of (1.9) by the expression 

~tw = (~ - v)l• (1 --  ~,) (2.3) 

and ,  a f t e r  i n t e g r a t i o n ,  we  f ind  

= C [,~/(l --  ,)~-~1TM (2.4) 

w h e r e  ~ and  ~ a r e  p a r a m e t e x s .  W e  d e t e r m i n e  t h e  i n t e g r a t i o n  c o n s t a n t  and  t he  i n i t i a l  v a l u e  of v in  (2.4) f r o m  
the  c o n d i t i o n  of the  c o n j u g a t i o n  of Y07) w i t h  s o l u t i o n  (2.1). 

I t  c a n  b e  s h o w n  b y  d i r e c t  c a l c u l a t i o n s  tha t  t he  v a l u e s  of the  d i m e n s i o n l e s s  v e l o c i t i e s  of t he  f r o n t  of 
the  w a v e  d e t e r m i n e d  u s i n g  r e l a t i o n s h i p s  (2.4), (1.9), and f r o m  t h e  f o r m u l a  

y = Aoq ~ (2.5) 

coincide. Expression (2.5) is an asymptotic solution of (1.8). Therefore, in the region of variable densifica- 
tion, formula (2.5) can be used. The coefficient A 0 is determined in this case from the condition of conjuga- 
tion and differs from the previous value only insignificantly. 

Curves of th'e dependence y(~), plotted using formulas (2.1), (2.5) and experimental [5] curves are 
shown on Fig. 3. Curves 1, 2, and 3 relate to a sandy soil with the compression power exponents n=3, 2.5, 
and 3, and a limiting deformation g. =0.2, 0.1, and 0.085. Experimental values of therate of propagation of 
the wave were determined with a value of the moisture content w= 10-12%, and are shown by the dotted curve 
on Fig. 3. 

With a known velocity of the wave, all the parameters of the front of the wave and the motion of the 
soil can be determined. For further calculations, it is convenient to approximate (2.1) by the expression 

y = (a,lb + c) -1 
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Curves 4 and 5 on Fig.  3 show the change in the boundary of the cav i ty~0?)  and the t i m e  of the p ropa -  
gation of the shock wave "r (7) with a l imiting deformat ion  e ,  = 0.085. Fig. 4 gives  calculated curves  of the 
change in the dependence of the s t r e s s e s  at the front  on the re la t ive  d is tance  a(R ~ (curves 1 and 2) and ex- 
p e r i m e a t a l  data f r o m  m e a s u r e m e n t  of the s t r e s s e s  in field t e s t s  [5] (curves 3 and 4 cor respond  to sands 
with w=10-12% and cu rve  2 to 4%). In plotting the s t r e s s  cu rves  1 and 2, values  of the veloci ty  of the wave 
given, respec t ive ly ,  in the  f o r m  of curves  1 and 2 on Fig. 3, we re  used. The  coordinate  ~? and the re la t ive  
d is tance  R ~ a r e  connected by the dependence 

~l ~ 2.10apcR ~ 

The zone of propagat ion of the shock wave and the p a r a m e t e r s  of the soil  behind the front depend con- 
s iderably  on the compress ib i l i t y  of the soil. There fore ,  fo r  a m o r e  exact qual i ta t ive analysis ,  data on the 
compress ib i l i t y  of the soil  with high values  of the p r e s s u r e  a r e  requi red .  

Approximat ion of the compres s ion  d i ag ram by the cu rve  given on Fig. 1 p e r m i t s  ca r ry ing  cut the ca l -  
culations using the s i m p l e  fo rmulas  (2.1) and (2.5). 

The calculated and exper imenta l  data a r e  in s a t i s f ac to ry  agreement .  

The solution (2.5) is  val id up to the moment  of the emiss ion  of sound, a f ter  which the  region of the 
propagat ion  of e las t icoplas t ic  deformat ion  begins.  
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